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New advances in the area of simulation optimization allow managers to go 

beyond traditional ranking rules, CAPM and real options analysis in order to 

select optimal sets of projects to fund.  Furthermore, these advances make use of 

portfolio performance measures and goals that can be defined to directly relate to 

corporate strategy and are easy to communicate and understand.  We present a 

real-world example to illustrate this methodology. 

 

 

In industry, managers must select portfolios of projects for funding, in order to 

advance the corporate goals.  There are generally many more projects than funding can 

support.  Ideally, managers aim to select an optimal subset of projects to meet the 

company’s goals while complying with budgetary restrictions. At the same time, they 

seek to control the overall risk of a portfolio of projects and ensure that cash flow or other 

such performance objectives are maximized. 

Modern portfolio theory is still largely based on the Markowitz model of mean-

variance efficiency [16], or on assumptions related to it. An underlying assumption for 

this theory is that portfolio returns are normally distributed. While the mean-variance 

efficiency theory is still used throughout industry for securities portfolio selection, there 

is a growing body of evidence that suggests that actual portfolio returns are not normally 

distributed [17].  This is especially true when the task is to select a portfolio of projects, 

as opposed to financial assets. In such a setting, it has been shown that mean-variance is 

not an appropriate risk measure for a portfolio, and in practice, mean-variance efficient 

portfolios have been found to be quite unstable [2, 3].  

Determining how to allocate investment capital among projects in order to maximize 

performance is a common endeavor with multiple approaches to solutions.  These 

investment decisions can have a significant, direct impact on the financial health of an 

organization.  A wide variety of models and solution techniques – such as CAPM and, 

more recently, Real Options Analysis (ROA) – center around measures of the benefits of 

the investments, such as return, payback period and cash flow.  Most of these techniques, 

however, still rely on a series of assumptions that limit the complexity of the model. For 

example, a deterministic measure of market risk must be known (or estimated), project 

returns must follow a known and tractable type of probability distribution, a risk-aversion 

level must be assumed for the firm, and so forth. 



2     

A recently developed modeling and solution approach that has proved capable of 

overcoming these limitations is simulation optimization.  Simulation becomes essential 

whenever a situation arises that is very difficult (or even impossible) to represent by 

tractable mathematical models.  In project portfolio selection, for example, it can be 

important to consider different types of risk associated with prospective decisions, 

including both macroeconomic risk (variability in interest rates), and project-specific risk 

(probability of success of each project, uncertainties in the magnitude and variability of 

sales and cost projections, estimation errors in projected investment requirements, etc.)  

Furthermore, complex situations cannot be easily analyzed by trial-and-error 

mechanisms, because the range of parameter values and the number of parameter 

combinations is too large for an analyst to simulate.  Today, there exist very powerful 

optimization algorithms to guide a series of simulations to produce high-quality solutions 

in the absence of tractable mathematical structures.  Furthermore, we are now able to 

precisely compare and rank different solutions in terms of quality [19].  

As we subsequently demonstrate, by this means we are able to optimize project 

portfolios by a variety of measures and with built-in safeguards against risk, including 

Net Present Value measures and Value-at-Risk measures that cannot normally be 

addressed in real world situations exhibiting the complexity we are now able to handle 

effectively.   

 

 

SIMULATION OPTIMIZATION 

 

Theoretically, the issue of identifying best values for a set of decision variables falls 

within the realm of optimization.  Until quite recently, however, the methods available 

for finding optimal decisions have been unable to effectively handle the complexities and 

uncertainties posed by many real world problems of the form treated by simulation.  The 

area of stochastic optimization (as in ROA, for example) has attempted to deal with some 

of these practical problems, but the modeling framework limits the range of problems that 

can be tackled with such technology. 

The complexities and uncertainties in real world systems are the primary reason that 

simulation is often chosen as a basis for handling the decision problems associated with 

those systems.  Consequently, decision makers must deal with the dilemma that many 

important types of optimization problems can only be treated by the use of simulation 

models, but once these problems are submitted to simulation there are no optimization 

methods that can adequately cope with them. 

Recent developments are changing this picture.  Advances in the field of 

metaheuristics—the domain of optimization that augments traditional mathematics with 

artificial intelligence and methods based on analogs to physical, biological or 

evolutionary processes—have led to the creation of optimization engines that 

successfully guide a series of complex evaluations with the goal of finding optimal values 

for the decision variables, as in [6, 7, 8, 9, 10, 11, 15]. 

An acclaimed instance of these engines is the search algorithm embedded in the 

OptQuest
®
 optimization system [18], which is largely based on a coordinated system of 

metaheuristic processes that include scatter search as a hub [10].  The engine is designed 

to search for optimal solutions to the following class of optimization problems: 
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Optimization 

Procedure 

Input 

Output 

System 

Simulator 

 

 Max or Min F(x)  
 Subject to Ax < b           (Constraints) 
  gl < G(x) < gu  (Requirements) 

  l < x < u      (Bounds) 
 

where x can be continuous or discrete with an arbitrary step size. 

The objective F(x) may be any mapping from a set of values x to a real value.  The 

set of constraints must be linear and the coefficient matrix A and the right-hand-side 

values of the vector b must be known.  The requirements are simple upper and/or lower 

bounds imposed on a function that can be linear or non-linear.  The values of the bounds 

gl and gu must be known constants.  All the variables must be bounded and some may be 

restricted to be discrete with an arbitrary step size. 

A typical example might be to maximize the throughput of a factory by judiciously 

increasing machine capacities subject to budget restriction and a limit on the maximum 

work in process (WIP).  In this case, x represents the specific capacity increases and F(x) 

is the expected throughput.  The budget restriction is represented by Ax < b and the limit 

on WIP is achieved by a requirement modeled as G(x) < gu.  Each evaluation of F(x) 

and G(x) requires a discrete simulation of the factory.  By combining simulation and 

optimization, a powerful design tool results. 

OptQuest is a generic optimizer that successfully embodies the principle of separating 

the method from the model.  In such a context, the optimization problem is defined 

outside the complex system.  Therefore, the evaluator can change and evolve to 

incorporate additional elements of the complex system, while the optimization routines 

remain the same.  Hence, there is a complete separation between the model that 

represents the system and the procedure that is used to solve optimization problems 

defined within this model. 

The optimization procedure uses the outputs from the system evaluator, which 

measures the merit of the inputs that were fed into the model.  On the basis of both 

current and past evaluations, the method decides upon a new set of input values (see 

Figure 1).   

 

 

 

 

 

 

 

 

 
 

 

Figure 1: Coordination between Optimizer and Simulator 
 

The optimization procedure is designed to carry out a special ―non-monotonic 

search,‖ where the successively generated inputs produce varying evaluations, not all of 
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them improving, but which over time provide a highly efficient trajectory to the best 

solutions.  The process continues until an appropriate termination criterion is satisfied 

(usually based on the user’s preference for the amount of time to be devoted to the 

search).  We now discuss how this methodology can be applied to optimize the selection 

of project portfolios. 

 

PROJECT PORTFOLIO OPTIMIZATION  

In 1952, Nobel laureate Harry Markowitz laid down the basis for modern investment 

theory. Markowitz focused the investment profession's attention on mean-variance 

efficient portfolios.  A portfolio is defined as mean-variance efficient if it has the highest 

expected return for a given variance or if it has the smallest variance for a given expected 

return. 

In figure 2 below, the curve is known as the efficient frontier and contains the mean-

variance efficient project portfolios. The area below and to the right of the efficient 

frontier contains various risky assets (due to the discrete nature of projects, the efficient 

frontier in the figure shown here is really a set of points, not a continuous line). The 

mean-variance efficient portfolios are combinations of these risky projects. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The mean-variance efficient frontier 

 

Certain principles of portfolio theory are fundamental: decision makers are risk-

averse; they prefer portfolios with high returns and low risk. From these principles, we 

can develop optimization models that construct efficient portfolios of projects. 

The best-known model for portfolio optimization is based on the assumption that the 

expected portfolio returns will be normally distributed, with a mean = r, and a covariance 

matrix = Q.  The model seeks to balance risk and return in a single objective function, as 

follows:   

 

Expected 

Returns 

Variance 

(risk) 

Efficient 

Frontier 
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Given a vector of portfolio returns r, and a covariance matrix Q, then we can 

formulate the model as follows: 

 

Maximize   rT w - kwT Qw  (1) 

Subject to:  i wi = 1   (2) 

     w  0    (3) 

 
where wi is the proportion of the total capital invested in project i, and k is represents a 

coefficient of the firm’s risk aversion.   

 

Equation (3) in the above model imposes no restrictions on w, other than non-

negativity, and hence implies that w is a continuous variable.  That is, since we are 

talking about project portfolios, we assume here that a firm can have fractional 

participation levels in a project.  We can easily modify the equation so that the decision is 

whether or not to invest in a project, by writing w  (0, 1) instead. 

In practice, small changes in the estimated parameter inputs (expected returns, 

correlation and variance) lead to large changes in the implied portfolio holdings. 

Typically, these input parameters are estimated using either historical data or forecasts. 

According to recent research, estimation errors in these input parameters frequently 

outweigh the benefits of the mean-variance model [2, 3].  In the following practical 

example, we show alternate models for choosing portfolios that are, in some sense, more 

robust to estimation parameters, and result in more intuitive measures of risk and 

performance from the standpoint of a manager. 

 

 

A PRACTICAL EXAMPLE 

 

The Energy Industry uses project portfolio optimization to manage investments in 

exploration and production, as well as power plant acquisitions [12, 13].   

The following example involves a company that has sixty-one potential projects in its 

investment funnel.  The projects have been classified into three categories according to 

their stage in the funnel: (1) Identified, (2) Entered; and (3) Captured.  Each type of 

project requires a certain number of business development, engineering and earth 

sciences personnel, and the company has a budget limit for these investment 

opportunities.   

Identified projects are being considered for entry, and the company has no stake in 

them yet.  There will be investment at risk prior to the determination of successful entry 

and successful capture. The current period cash flow consideration for these projects is 

the cost to secure the rights into the project.   

Entered projects are those where the company has made the decision to invest in 

order to determine the presence of a revenue stream (standard project probability of 

success).  Cash flow for these projects consists of investment necessary to assess the 

opportunity and obtain a revenue stream.  Projected revenue and expense data are also 

considered.   

Captured projects are those projects that the company has determined will be capable 

of providing a revenue stream, or from which it is already realizing revenue.  Cash flows 
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for these projects consist only of projected revenues and expenses, including any initial 

investment necessary to obtain a revenue stream.  In addition, associated with each type 

of project is a probability of successfully entering the following stage. 

Real, but significantly disguised portfolio data has been used to populate the funnel. 

This example consists of 26 Identified projects, 21 Entered projects and 14 Captured 

projects.  We include the assumption that a decision to enter into an Identified project 

could be delayed a maximum of one year, while capturing an Entered project could be 

delayed for two years.  Captured projects can be suspended for no more than three years.  

After that time, rights to pursue the opportunity are deemed to have expired. 

In common with cash, personnel and time are considered to be scarce resources.  

Three categories of personnel work on each project:  Business Development, Engineering 

and Earth Sciences.  The availability assumptions for each category, during the whole 

planning horizon were:  (1) there are 6 Business Development people available; (2) there 

are 40 Engineers available; and (3) there are 40 Earth Scientists available.  Business 

Development officers can work on four projects at one time, while Engineers and Earth 

Scientists work on a single project.  The personnel requirements by project type are 

shown in Table 1. 

 
Table 1:  Personnel Requirements 

 

 

 

 

 

 

For our analysis, we used OptFolio™ a product of OptTek Systems, Inc. that uses the 

OptQuest engine, and combines simulation and optimization into a single system 

specifically designed for portfolio optimization [1, 2, and 14].  The cash flows are entered 

as constants or statistical distributions depending upon the user’s knowledge of system 

uncertainty.  The revenues and expenses can be correlated between projects, and mutual 

exclusivity or dependency conditions can be imposed among projects.  A cost of capital 

rate is used to compute discounted cash flows (the system allows this rate to be specified 

either by a constant or a distribution).  Users specify performance metrics and constraints 

to tailor the portfolio for their needs.  We examined multiple cases to demonstrate the 

flexibility of this method to enable a variety of decision alternatives that significantly 

improve upon traditional mean variance portfolio optimization.  The results also show the 

benefits of managing and efficiently allocating scarce resources like personnel and time. 

Each of the cases described below was run for 500 iterations, with 1,000 observations 

(simulations) per iteration.  The weighted average cost of capital, or annual discount rate, 

used for all cases was 12%. 

The solution quality of the different cases was evaluated in terms of expected returns 

of the portfolio, average personnel utilization rate, capture rate and divestment rate.  The 

capture rate is calculated as the number of Entered projects selected divided by the total 

number of Entered projects in the funnel.  The divestment rate is calculated as:  1 minus 

the number of Captured projects selected divided by the total number of Captured 

projects in the funnel.  This measures how many Captured projects were eliminated, and 

how many were continued. 

Project Type Identified Captured Total 

Personnel Exploratory Other Available

Business Development 1 1 1 0 6

Engineering 1 1 1 2 40

Earth Sciences 2 3 2 2 40

Entered
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Base Case:  Unconstrained Optimization 

 

The Base Case is set up using the traditional portfolio mean variance case to provide 

a basis for comparison for subsequent cases.  For ease of presentation, we use a modified 

terminology in this example.  We will call NPV the mean expected return (i.e. the mean 

of the distribution of the NPV values) of the selected portfolio, and NPV the standard 

deviation of returns.  An empirical histogram for the optimal portfolio is shown in Figure 

3. In this case, we do not allow for the possibility of delaying the investment in a project.  

In other words, all new projects must start immediately, and Captured projects cannot be 

suspended.   We impose a budget constraint, but no personnel constraints for this case.  

The problem can be formulated as follows: 

 

Maximize   NPV   (mean expected returns) 
 
Subject to: 

    NPV  $140M (std. dev. of returns) 
    All projects must start in year 1 
    Budget Constraint 
 

This formulation results in a portfolio with the following statistics: 

 

 NPV  = $455M,   NPV  = $136M,   P(5) = $266M 

 

Number of Projects: 33 

Capture Rate:   76% 

Divestment Rate: 36% 
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Figure 3: Base Case 

 

In purely financial terms, this case results in high performance.  However, we have 

deliberately failed to address the scarcity in human resources in order to have a base case 

for comparison to other scenarios.  The results above imply the need for an additional 12 

engineers and 23 earth scientists beyond those available.  If we consider the cost of these 

resources to be, on average, approximately $70K per year, then we would have an 

additional annual operating cost of 35 x $70K = $2.45M, equivalent to a present value 
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over the planning horizon of $18.31M.  This amount is not accounted for, and may 

exceed the budget constraint.  There are additional costs usually related to new personnel 

that are not addressed here, such as training, travel, etc. 

 

Case 1:  Traditional Markowitz Approach 

 

In this case, we again implement the mean-variance efficient portfolio method 

proposed by Markowitz.  The decision is to determine participation levels (0,1) in each 

project with the objective of maximizing the expected NPV of the portfolio while 

keeping the standard deviation of the NPV below a specified threshold.  This case is 

similar to the Base Case, but here we introduce constraints based on the availability of the 

different types of personnel. 

 

Maximize   NPV 
Subject to: 

    NPV < $140M 
    All projects must start in year 1 
    Budget Constraint 
    Personnel Constraints: 

Bus. Devel.  6 per year 
Engineers  40 per year 
Earth Scientists  40 per year 

 

 The resulting portfolio has the following statistics: 

 

NPV  = $394M   NPV  = $107M   P(5) = $176M 

 

Average Personnel Utilization:  70% 

Number of Projects:   22 

Capture Rate:      33% 

Divestment Rate:   50% 

 

Figure 4 shows the graph of the NPV obtained for 1000 replications of this case. 
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Figure 4:  Mean Variance Portfolio 
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Case 2:  Risk controlled by 5
th

 Percentile 

 

For most managers, statistics such as variance or standard deviation of returns are not 

easy to interpret.  It is clearer to say: ―there is a 95% chance that the portfolio return is 

above some threshold value.‖  This can be achieved by imposing a requirement on some 

percentile of the resulting distribution of returns.  In Case 2, we do just that. The decision 

is to determine participation levels (0,1) in each project with the objective of maximizing 

the expected NPV of the portfolio, while keeping the 5
th

 percentile of the NPV 

distribution above the value determined in Case 1. In other words, we want to find the 

portfolio that produces the maximum average return, as long as no more than 5% of the 

observations fall below $176M.  In addition, in this case we do allow for delays in the 

start dates of projects, according to the windows of opportunity defined earlier for each 

type of project. In order to achieve this, we have created copies of a project that are 

shifted by one, two or three periods into the future (according to the windows of 

opportunity defined for each project type).  We use mutual exclusivity clauses to ensure 

that only one start date for each project is selected. For example, we have a project (i.e. 

Project A) that can start at time t = 0, 1 or 2.  We use the following mutual exclusivity 

clause as a constraint: 

 

Project A0 + Project A1 + Project A2  1, 

 

The subscript following the project name corresponds to the allowed start dates for the 

project, and the constraint only allows at most one of these to be chosen.  The 

formulation of this case scenario is as follows: 

 

Maximize   NPV 
Subject to: 

    P(5)NPV  $176M 
    Projects may start at any time, as allowed 
    Budget Constraint 
    Personnel Constraints: 

Bus. Devel.  6 per year 
Engineers  40 per year 
Earth Scientists  40 per year 

 

This case has replaced the standard deviation with the 5
th

 percentile as a measure of 

risk containment.  The resulting portfolio has the following attributes: 

 

NPV  = $438M   NPV  = $140M   P(5) = $241M 

 

Average Personnel Utilization:  94.5% 

Number of Projects:   27 (7 delayed) 

Capture Rate:     43% 

Divestment Rate:   29% 
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By using the 5
th

 percentile instead of the standard deviation as a measure of risk, we 

were able to shift the distribution of returns to the right, compared to Case 1, as shown in 

Figure 5.   
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Figure 5:  5

th
 Percentile Portfolio 

 

 This case clearly outperforms case 1.  Not only do we obtain significantly better 

financial performance, but we also achieve a higher personnel utilization rate, and a more 

diverse portfolio with a higher capture rate and lower divestment rate.  With respect to 

the base case, this case also performs better – even financially – if we take into account 

the trade-off between hiring new personnel and the difference in expected returns. 

  

Case 3:  Maximizing Probability of Success 

 

In Case 3, the decision is to determine participation levels (0,1) in each project with 

the objective of maximizing the probability of meeting or exceeding the mean NPV 

found in Case 1.  As in Case 2, start times for projects are allowed to vary according to 

the stated limits.  The problem can be formulated as follows: 

 

Maximize   Probability(NPV  $394M) 
Subject to: 

    Projects may start at any time, as allowed 
    Budget Constraint 
    Personnel Constraints: 

Bus. Devel.  6 per year 
Engineers  40 per year 
Earth Scientists  40 per year 

 

This case focuses on maximizing the chance of obtaining a goal and essentially 

combines performance and risk containment into one metric.  The resulting portfolio has 

the following attributes: 

 

NPV  = $440M   NPV  = $167M   P(5) = $198M 

 

Average Personnel Utilization:  94.5% 

Number of Projects:   27 (7 delayed) 

Capture Rate:     38% 
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Divestment Rate:   21% 

 

Although this portfolio is similar in performance to the one in Case 2, this portfolio 

has a 70% chance of achieving or exceeding the NPV goal.  As can be seen in the graph 

of Figure 6, we have succeeded in shifting the probability distribution even further to the 

right, therefore increasing our chances of exceeding the returns obtained with the 

traditional Markowitz case.  In addition, in cases 2 and 3, we need not make any 

assumption about the distribution of expected returns. 
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Figure 6:  Maximum  Probability Portfolio 

From the results of this case, we can conduct an interesting analysis that relates to 

Value-at-Risk (VaR).  In traditional (securities) portfolio management, VaR is defined as 

the worst expected loss under normal market conditions over a specific time interval and 

at a given confidence level.  In other words, VaR measures how much the holder of the 

portfolio can lose with % probability over a certain time horizon [4].  In the case of 

project portfolios, VaR can be defined as the probability that the NPV of the portfolio 

will fall below a specified value.  Going back to our present case, the manager may want 

to limit the probability of incurring negative returns.  In that case, we can formulate the 

problem in a slightly different way: we still want to maximize the expected return, but we 

limit the probability that we incur a loss to  = 1%, as follows: 

 

Maximize   NPV 
Subject to: 

    P(NPV<0)  1% 
    Projects may start at any time, as allowed 
    Budget Constraint 
    Personnel Constraints: 

Bus. Devel.  6 per year 
Engineers  40 per year 
Earth Scientists  40 per year 

 

The results of this scenario are: 
 

NPV  = $411M   NPV  = $159M   P(5) = $195M 

Average Personnel Utilization:  90% 

Number of Projects:   27 (4 delayed) 
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Capture Rate:     38% 

Divestment Rate:   21% 
 

These results turn out to be slightly inferior to the case where the probability was 

maximized.  This is no surprise, since the focus was on limiting the probability of 

downside risk, whereas before the goal was to maximize the probability of obtaining a 

high expected return.  However, this last analysis may prove valuable for a manager that 

wants to control the VaR.  As shown here, for this particular set of projects, a very good 

portfolio can be selected with that objective in mind. 

 

 

CONCLUSIONS AND FURTHER RESEARCH 

 

As the above example shows, the expected returns of project portfolios are seldom 

normally distributed. This creates the need for optimization methods that do not rely 

solely on theory derived from Markowitz’s model, but whose underlying principles are 

distribution-independent. We have also shown that in project portfolio management and 

optimization it is not enough to worry about capital budget constraints.  If we ignore 

other scarce resources, such as personnel and time, we may end up selecting a project 

portfolio that is physically infeasible to implement, given practical limitations in the 

availability of those resources. 

Managers need to assess multiple scenarios in order to select a portfolio that aligns 

with their strategy and risk profile.  By using a methodology and a tool that clearly 

communicates the performance of the portfolio in each scenario, the manager can make 

better decisions.  Our results show that, through the use of more intuitive performance 

measures, we can guide our search towards improvements in the performance of the 

desired portfolio of projects. 

Although our example focuses primarily on maximizing expected NPV, there is 

numerous evidence that managers in industry consider alternate measures such as IRR, 

payback period and return duration, along with NPV, when making capital budgeting 

decisions [5].  There is also evidence that non-financial criteria can also play an 

important role in the ultimate decision to invest in a project.  Further work can be done to 

explore scenarios with different objectives, some of which may not be defined in 

financial terms.  For instance, from a strategic cost perspective, the manager may want to 

select a portfolio that meets certain financial requirements, but requires the least amount 

of human resources.  Formally, the objective would be to minimize the maximum number 

of resources required per period in the planning horizon.  In addition, other measures may 

be developed to represent the attractiveness of projects in terms of strategic alignment, 

geographical diversification or intensification, and other non-financial criteria. 

 



     13 

REFERENCES 

 
 [1] April, J., F. Glover and J. Kelly (2002) ―Portfolio Optimization for Capital Investment 

Projects,‖ Proceedings of the 2002 Winter Simulation Conference, Yuceson, Chen, 

Snowdon and Charnes, eds., pp. 1546-1554. 

 [2] April, J., F. Glover and J. Kelly  (2003a) ―Optfolio - A Simulation Optimization System 

for Project Portfolio Planning,‖ Proceedings of the 2003 Winter Simulation Conference, 

S.Chick, T. Sanchez, D. Ferrin and D. Morrice, eds., pp. 301-309. 

 [3] April, J., F. Glover, J. Kelly and M. Laguna (2003b) ―Practical Introduction to Simulation 

Optimization,‖ Proceedings of the 2003 Winter Simulation Conference, S. Chick, T. 

Sanchez, D. Ferrin and D.Morrice, eds., pp. 71-78. 

 [4] Benninga, S. and Z. Wiener. (1998) ―Value-at-Risk (VaR)‖ Mathematica in 

Education and Research, Vol.7, No.4. 
 [5] Barney, LD. and M. Danielson (2004) ―Ranking Mutually Exclusive Projects:  The Role 

of Duration,‖ The Engineering Economist, Vol. 49, pp. 43-61.  

 [6] Campos, V., F. Glover, M. Laguna and R. Martí (1999a) ―An Experimental Evaluation of 

a Scatter Search for the Linear Ordering Problem,‖ University of Colorado at Boulder. 

 [7] Campos, V., M. Laguna and R. Martí (1999b) ―Scatter Search for the Linear Ordering 

Problem,‖ New Methods in Optimization, D. Corne, M. Dorigo and F. Glover,eds., pp. 

331-339, McGraw-Hill. 

 [8] Glover, F. (1998) ―A Template for Scatter Search and Path Relinking,‖ Artificial 

Evolution, Lecture Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald, M. 

Schoenauer and D. Snyers, eds., pp. 13-54, Springer-Verlag. 

 [9] Glover, F. and M. Laguna (1997) ―Tabu Search,‖ Kluwer Academic Publishers.  

 [10] Glover, F., M. Laguna, and R. Marti (2000) ―Fundamentals of scatter search and path 

relinking,‖ Control and Cybernetics, Vol. 29, No. 3, pp. 653-684. 

 [11] Glover, F., M. Laguna and R. Marti (2003) ―Scatter Search, Advances in Evolutionary 

Computing: Theory and Applications,‖ pp. 519-537, Springer-Verlag, New York. 

 [12] Haskett, W. (1999), ―Portfolio Analysis of Exploration Prospect Ideas,‖ Seminar 

Presentation, ―Managing the Exploration Process,‖ Insight Information Company, 

Calgary. 

 [13] Haskett, WJ. (2003) ―Optimal Appraisal Well Location Through Efficient Uncertainty 

Reduction And Value Of Information Techniques,‖ SPE Annual Technical Conference 

and Exhibition. 

 [14] Kelly, J. (2002) ― Simulation Optimization is Evolving,‖ INFORMS Journal of 

Computing, Vol. 14. 

 [15] Laguna, M. (2002) ―Scatter Search,‖ Handbook of Applied Optimization, P. M. Pardalos 

and M. G. C. Resende, eds., Oxford Academic Press. 

 [16] Markowitz, Harry M. (1952) ― Portfolio Selection,‖ Journal of Finance, Vol. 7, No. 1. 

 [17] McVean, JR. (2000) ―The Significance of Risk Definition on Portfolio Selection,‖ SPE 

Annual Technical Conference and Exhibition. 

 [18] OptTek Systems, Inc. (2004) Optquest Engine Manual [online], Available online via 

<www.OptTek.com> 
 [19] Pichitlamken, J. and B. Nelson (2001) ―Selection-Of-The-Best Procedures For 

Optimization Via Simulation,‖ Proceedings of the 2001 Winter Simulation Conference, 

B.A. Peters, J.S. Smith, D.J. Medeiros, and M.W. Rohrer, (eds.) pp. 401-407. 

  

 

 

 

http://www.opttek.com/


14     

 BIOGRAPHICAL SKETCHES 

MARCO BETTER is a research associate at OptTek Systems while currently 

pursuing a Ph.D. at the University of Colorado at Boulder in Operations Research.  He 

holds a B.S. in Industrial Engineering and an MBA.  Mr. Better has more than 10 years of 

work experience in the automotive, banking and telecommunications industries.  His 

interests lie in the areas of simulation optimization and data mining.  His email address is 

<better@OptTek.com>. 

FRED GLOVER is Chief Technology Officer of OptTek Systems, Inc., and is in 

charge of algorithmic design and strategic planning initiatives. He currently serves as 

Distinguished Professor in Systems Science at the University of Colorado at Boulder.  He 

has authored or co-authored more than three hundred fifty published articles and eight 

books in the fields of mathematical optimization, computer science and artificial 

intelligence, with particular emphasis on practical applications in industry and 

government.  Dr. Glover is the recipient of the distinguished von Neumann Theory Prize, 

as well as of numerous other awards and honorary fellowships, including those from the 

American Association for the Advancement of Science, the NATO Division of Scientific 

Affairs, the Institute of Management Science, the Operations Research Society, the 

Decision Sciences Institute, the U.S. Defense Communications Agency, the Energy 

Research Institute, the American Assembly of Collegiate Schools of Business, Alpha Iota 

Delta, and the Miller Institute for Basic Research in Science. He also serves on advisory 

boards for numerous journals and professional organizations. His email address is 

<glover@OptTek.com>.  

mailto:glover@OptTek.com

